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Abstract

We show that computing the lexicographically first fouraraig for planar graphs ia?-
hard. This result optimally improves upon a result of Khuled Vazirani who prove this
problem NP-hard, and conclude that it is not self-redudibliie sense of Schnorr, assum-
ing P # NP. We discuss this application to non-self-reducibility gmmdvide a general
related result. We also discuss when raising a problem'siteiness lower bound -
hardness can be valuable.
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1 Introduction

Khuller and Vazirani [13] proved that computing the lexicaghically smallest so-
lutions of P1-4-Color instances is NP-hard, wheRa-4-Color denotes the pla-

* Supported in part by the German Science Foundation (DFGrugeints RO 1202/9-1
and RO 1202/9-3. A preliminary version of this paper appea® part of [9] in the pro-
ceedings of th&eventh Italian Conference on Theoretical Computer Seienc

URL: ccc.cs.uni- duesseldorf.de/ rothe (JOrg Rothe).
I Current address/affiliation: Entwicklung LasersensodiENOPTIK Laser, Optik, Sys-
teme GmbH, 07745 Jena, Germany.
2 Corresponding author. Supported in part by a Heisenbetgvhip from the DFG.

Preprint submitted to Elsevier Science 27 April 2006



nar graph four-colorability problem. They conclude thatjeassP = NP, the
polynomial-time decidable probleR1-4-Color is not self-reducible in the sense
of Schnorr [22,23]. Noting that their result appears to ke fitst such non-self-
reducibility result for problems in P, they proposed as aprsting task to find
other problems in P that are not self-reducible under sogsghle assumption.

We raise Khuller and Vazirani’'s NP-hardness lower bouncconputing the lex-
icographically smallest four-coloring of a planar graph$-hardness. Our result
is optimal, since this problem belongs to (the function agaif) the class\?%.

The classA, = PP, which belongs to the second level of the poly-
nomial hierarchy [17,26], contains exactly the problemdvade in deter-
ministic polynomial time with an NP oracle. Papadimitriol8] proved that
Unique-Optimal-Traveling-Salesperson is Ab-complete, and Krentel [15] and
Wagner [28] established many more-completeness results, including the re-
sult that the problemddd-Max-SAT is AL-complete. The complexity of colorability
problems has been studied in a number of papers, see, ¢2259,6,28,13,20].

As mentioned above, if for some problem in P computing théctegraphically
smallest solution is hard, then the problem itself cannosdléreducible in the
sense of Schnorr [22,23], unleBs= NP. We discuss this application to non-self-
reducibility and provide a general related result. In gaittr, it follows from this
result that even a set as simpleXashas representations in which it is not self-
reducible in Schnorr’s sense, unldss= NP. Finally, we conclude this paper with
a discussion of when raising a problem’s NP-hardness loand toA5-hardness
can be valuable, and pose some open questions.

2 Computing the Smallest Four-Coloring of a Planar Graph

Appel and Haken [1,2] showed that every planar graph can loeazbwith no more
than four colors, thus solving the famous Four Color Conjexin the affirma-
tive. In contrast, for each > 4, computing the lexicographically firétcoloring

of a planar graph is hard: Khuller and Vazirani [13] estdi#d an NP-hardness
lower bound for this problem. We raise their lower bound¥$hardness. Since
the lexicographically smallegtcoloring of a planar graph can be computed in (the
function analog of A%, this improved lower bound is optimal.

Definition 2.1 Letk > 1, and let0, 1, ...,k — 1 represent colors.

e A k-coloring of an undirected grapltz = (V, E) is a mappingyg : V —
{0,1,...,k—1}.

e A k-coloring v¢ is said to belegal if and only if for each edgdu,v} € E,
Ya(u) # Ya(v).



e A graphd is said to bek-colorableif and only if there exists a legal-coloring
of G.
e LetPl-k-Color denote the planar graph-colorability problem.

Stockmeyer [25] proved thakl-3-Color is NP-complete, see also Garey et
al. [6]. By Appel and Haken’s above-mentioned result, eyg@anar graph is four-
colorable. ThusP1-k-Color is in P for eachk > 4.

Definition 2.2 (Khuller and Vazirani [13]) Let & > 1, and let the vertex set
of a given undirected grapliy = (V, E) with n vertices be ordered a¥ =
{v1,v9,...,v,}. Then, every-coloring ¢ of G can be represented by a string

e in{0,1,...,k—1}", whichis defined by = ¥ (v1)g(ve) - - - Ve (vy).
Define thdexicographically smallest (legat)-coloringby
LFp1-k-coror (G) = min{e)s | 1 is a legalk-coloring of G},

if G € P1-k-Color, where the minimum is taken with respect to the lexicog@phi
ordering of strings, and defineFp; 1-co10: (G) = 10" if G & P1-k-Color.

We now prove our main result.

Theorem 2.3 Computing the lexicographically smallegtcoloring for planar
graphs isA5-hard for anyk > 4.

Proof.  For simplicity, we show this claim only for = 4. Let p, be the reduction

of Khuller and Vazirani [13, Theorem 3.1]. Recall that maps a given planar

graphG = (V, E), whose vertices are ordered Bs= {v,vs,...,v,}, to the

planar graph{ = (U, F’) defined as follows:

e The vertex set off is ordered as/ = {uy,us, ..., us,}, Whereu, is a new
vertex andu,,.; = v; is an old vertex foreach 1 < i < m.

e The edge set off is defined byF = EU {{u;, um4i} | 1 < i < m}.

It follows immediately from this construction that

(1) G € P1-3-Color <— LFP1—4—Color(p4(G>) c {Omw ‘ w e {17 2, 3}m}’

that is, ‘G € P1-3-Color?” can be decided by looking at the first bits
of LFp1-a-cotor (H )

We give a reduction from the problefdd-Min-SAT, which is defined to be the

set of all boolean formulag8' = F'(zy, xs, ..., x,) in conjunctive normal form for
which, assuming- is satisfiable, the lexicographically smallest satisfyingigs-
menta : {zy,zs,...,x,} — {1,2}is “odd,” i.e., for whicha(z,,) = 1. Here, “1”

represents “true,” and2” represents “false.”



It is well known that0dd-Min-SAT is Af-complete; Krentel [15] and also Wag-
ner [28] proved the corresponding claim for the dual probieidMax-SAT.

Let FF = F(xy,29,...,x,) be any given boolean formula. Without loss of gen-
erality, we may assume that is in conjunctive normal form with exactly three
literals per clause. Assume thBthasz clauses. Let be the Stockmeyer reduc-
tion from 3-SAT to P1-3-Color, see Stockmeyer [25] and also Garey et al. [6]. This
reductiono, on inputF, yields a graphiG = (V, E) with m > n vertices, where

m = m(F") depends on the numberof variables, the numberof clauses, and the
structure ofF'. Note thatF’s structure induces a certain number of “crossovers” of
edges to guarantee the planarityafsee [6,25] for details.

Order the vertex set @i asV = {vy, v, ..., v, } such that

(a) foreach, 1 <i < n,v; represents the variable, and
(b) for eachi, n < i < m, v; represents some other vertex@f

Note thatG is a planar graph satisfying the following properties:

(i) Fis satisfiable if and only i€7 is 3-colorable, using the colots 2, and3.

(i) Every satisfying assignment of F' corresponds to a-coloring v, of G such
that for each, 1 < i < n, ¥, (v;) = a(v;) € {1,2}. The color3 is used for the
other vertices of.

Now apply the reductiop, of Khuller and Vazirani tad& and obtain a planar graph
H = p4(G) = py(o(F)) that satisfies Equation (1) as described above. It follows
immediately from this construction and from Equation (1gtth

F € 0dd-Min-SAT <—
LFPl-4-Color(p4(U(F))) € {Omwly | w € {1, Q}n_l andy c {1, 2, 3}m—n}’

that is, “F" € 0dd-Min-SAT?” can be decided by looking at the first bits and at
the (m + n)th bit of LFPl-4-Color(H)-

For k£ > 4, the claim of the theorem follows from an analogous arguntieait
employs in place op, the appropriate reductigs, from [13, Thm. 3.2]. (]

3 Non-Self-Reducible Sets in P

From their NP-hardness lower bound for computing the legtiaphically first four-
coloring of planar graphs, Khuller and Vazirani [13] corddithat, unlesB = NP,
the polynomial-time decidable probleri-k-Color is not self-reducible fok > 4.



The type of (functional) self-reducibility used by Khulland Vazirani is due to
Schnorr [22,23], see also [5]. For more background on selticibility, see, e.qg.,
[24,12,21].

Definition 3.1 (Schnorr [22,23])

e LetX andI’ be alphabets with at least two symbols each. Instances bfgnts
are encoded ovex;, and solutions of problems are encoded oVeFor any set
B C ¥* x I and any polynomigh, thep-projection of B is defined to be the set

proj,(B) = {x € X" [ (3y € I'") [ly| < p(|z|) and(z,y) € Bl}.

If A= proj,(B), we sayA has therepresentatiofB, p).

e A partial order< onX* is polynomially well-founded and length-boundiédnd
only if there exists a polynomialsuch that

(a) every <-decreasing chain with maximum elemenhas at mosy(|z|) ele-

ments, and

(b) for all stringsz,y € ¥*, x < y implies|z| < q(|y])-

e Let A = proj,(B) for some setB C ¥* x I' and some polynomiagl. The
projection A is said to beself-reducible with respect to its representatiéh p)
if and only if there exist a polynomial-time computable tiortg mapping from
>* x I"to X* and a polynomially well-founded and length-bounded padider
< such that for all stringse € ¥*, for all stringsy € I'*, and for all symbols
vel,

(i) g(z,v) <z, and

(i) (z,7y) € B < (9(z,7),y) € B.

If the representationi B, p) of A = proj,(B) is clear from the context, we omit
the phrase “with respect to its representatiof, p).

We mention in passing that various other important typesifreducibility have
been studied, such as the self-reducibility defined by MayerPaterson [16] and
the disjunctive self-reducibility studied by Selman [2K] [14], and many oth-
ers. We refer the reader to the excellent survey by Josephvaudg [12] for
an overview and for pointers to the literature. Note thatsharp contrast with
Schnorr’s self-reducibility, every set in P is self-rechleiin the sense of Meyer
and Paterson [16], Ko [14], and Selman [24].

Definition 3.2 Let¥ = {0, 1}. Given any set in NP with A C ¥*, there is an
associated seB, C ¥* x ¥* and an associated polynomia}, such thatB, is in
P and A = proj,, (Ba).

e Foranyzx € ¥, define theset of solutions for: with respect taB 4 andp 4 by

Soks,pa)(2) ={y € X7 | |yl < pa(|z]) and(z,y) € Ba}.

Note thatz € A if and only ifSol g, ,,)(z) # 0.



e For anyz € X*, define thdexicographically first solution with respect 6,
andp, by
min Sol g, ,,) () if z € A

where the minimum is taken with respect to the lexicograptuering of>*, and

bin(n) denotes the binary representation of the integevithout leading zeros.
If the representationiB4,p4) of A = proj,,(B4) is clear from the context,

we useSols(x) and LF4(x) as shorthands for, respectivel$ol s, ,,)(z) and

LF(BA,pA) (x)

Itis well known that ifA is self-reducible then Li-can be computed in polynomial
time by prefix search, via suitable queries to the oratl®oreover, ifA isin P
then LF, can even be computed in polynomial time without any oraclerigs.
It follows that if A is in P yet computing LF is NP-hard themd cannot be self-
reducible, assuming # NP.

bin(2v(D) otherwise,

Khuller and Vazirani [13] propose to find polynomial-timeci#able problems
other tharP1-4-Color that are non-self-reducible, under the assumpiich NP.
Theorem 3.5 below provides a general result showing thaitmost trivial to find
such problems: For any NP problefnfor which LF, is hard to compute, one can
define a P-decidable versidn of A such that LF; is still hard to compute; hence,
D is not self-reducible, assumiriyy# NP.

To formulate this result, we now define the functional mang-ceducibility that
was introduced by Vollmer [27] as a potentially stricter ueithility notion than
Krentel's metric reducibility [15]. We also define the fumet classmin -P that
was introduced by Hempel and Wechsung [11].

Definition 3.3 (Vollmer [27]) Let f andh be functions front* to >*.

e We say thaff is polynomial-time functionally many-one reducikites (in sym-
bols, f <P 1) if and only if there exists a polynomial-time computablection
g such that for allx € ¥, f(z) = h(g(x)).

e We say that: is <FP-hardfor a function clas< if and only if for everyf € C,
f<u h.

e We say that is <EP-completefor C if and only ifh € C andh is <EP-hard.

Definition 3.4 (Hempel and Wechsung [11])Define the classin -P to consist of
all functionsf for which there exist a set € P and a polynomiap such that for
all x € X%,

f(z) = min{y € {0,1}" | |y| < p(|«|) and (z,y) € A},

where(-,-) : ¥* x ¥* — ¥* is a standard pairing function. If the set over which
the minimum is taken is empty, define by convenfian = bin(27(1=D).



Note that LF; = LF,) is in min-P for every NP setd and for every repre-
sentation ofA as ap-projectionA = proj,(B) of some suitable seB ¢ P and
polynomialp.

Theorem 3.5 Let> = {0, 1}, let A C ¥* be any setilNP, let B C ¥* x ¥* and
D C ¥* be sets irP, and letp be a polynomial such that = proj,(B) C D and
LF 4 is <FP-complete formin -P. Then, there exist a sét C ¥* x ¥* in P and a
polynomialg such thatD = proj,(C) and computind-Fp, is AS-hard.

Hence,D is not self-reducible with respect {6’, ), assuming® # NP.

Proof. Define the set
C = (B0 {(z,y) |yl < p(lz))}) U{(z,bin(2*"D)) |z € D},

and lety(n) = p(n)+1 for all n. Note that”' € P andD = proj,(C'). It also follows
that LF4(x) = LFp(z) mod 2 if z € D, and LEs(z) = LFp(z) = 0 mod 2 if
x ¢ D. Thus, for allz, LF4(x) = LFp(x) mod 2.

We now show that computing LFis as hard as deciding th&:-complete prob-
lem 0dd-Min-SAT, which was defined in Section 2. Since LB <'F-complete for
min -P, we have Lk, (F) = LF4(¢(F)) for some polynomial-time computable
functiont. Hence,

F € 0dd-Min-SAT <= LFg(F) =1 mod 2

Thus, one can decide whether or fobelongs ta0dd-Min-SAT by looking at the
last bit of LFy (¢(F)). 0

Corollary 3.6 If P # NP thenX* has representations in which it is not self-
reducible.

Proof. Replacing the seéb of Theorem 3.5 by>*, itis clear that the hypothesis of
the theorem can be satisfied by suitably choosing, andp.? It follows that¥*,
unconditionally, has representations in which it is not-sedlucible in the sense of
Schnorr, unles® = NP. [

3 Concrete examples of, B, andp are given in Section 4, where we assume that the
problemA (e.g.,A = P-SAT) as well as the set of solutions for instancesAddire suitably
encoded oveE. ThusA C ¥* = DandB C ¥* x Y*,



4 Conclusions and Open Questions

In Theorem 2.3, we strengthened Khuller and Vazirani’s [@®fr bound for com-
puting the lexicographically first four-coloring for plargraphs from NP-hardness
to Ab-hardness. The non-self-reducibility of tR&-4-Color problem follows im-
mediately from these lower bounds.

SinceP # NP is equivalent td® # AL, our strengthened lower bound for comput-
iNg LFp1-£-co10r (G) from Theorem 2.3 does not give strengthened evidence regard
ing the non-self-reducibility oP1-k-Color. However, raising a problem’s lower
bound so as to match its upper bound is important in its ownt.rig

In addition, we now give another reason of why this improwasldr bound may

be valuable, by re-iterating a point that has first been madddmaspaandra et
al. [10], who discuss the issue of why and when it may be vaéutbraise a prob-
lem’s NP-hardness lower bound@3-hardness, with regard to other computational
models such as one-sided error randomized polynomial trae@mbiguous poly-
nomial time. Just af\}, the clas®} = PNPlel pelongs to the second level of
the polynomial hierarchy; note thatP C ©5 C A5 C NP"P. Rephrasing for the
classAf a question that Hemaspaandra et al. [10] studied¥rwe ask: Given

a complexity clasg, is it currently known thalNP C C if and only if A} C C?
The answer to this question is the key to the issue of whetheotaaising anNP-
hardness lower bound th}-hardness indeed may have some value: If the answer
is yes, then the raised lower bound is worthless with redjpettte computational
model captured by; if the answer is no, then the raised lower bound may poten-
tially be valuable foC.

Table 1 provides some answers to the above question forugadiasseg with
respect ta\s-hardness! In most cases (namely, férbeing one of?, BPP, RP,
ZPP, andUP), the answer foA\L is the same as fab}, by essentially the argument
given in [10]. However, it is eitherPP or GP, the answer for\} differs from that
for ©%. In particular, sinc&NP C PP and©} C PP (see [4]), raisingNP-hardess
to ©%-hardness is worthless f&YP. In contrast, raisingiP-hardess ta\5-hardness
may potentially be valuable f@P, since it is not known whethek, C PP; there
is even a relativized counterexample fis§ C PP (see [3]). And forC = GP, the
closure properties & imply that raisingNP-hardess t®%-hardness is worthless
(see [10]), but do not seem to suffice in any obvious way taltieé same claim for
AB-hardness. Again, there are relativized counterexamplethé inclusionAf C
GP—and even relativizations that separate the entire polyaldnerarchy from
GP with immunity, see [19]. However, unlike fatP, these relativized separations
do not give us any more insight regarding the value of raidiftghardness ta\5-
hardness fozP, sinceNP C G is not known to hold either.

4 For the definitions of the classédliscussed in Table 1, the reader is referred to [10] and
the original literature cited therein.



Computational Model C NP CC < A C(C?| Reference
Deterministic Polynomial Timg P yes [17,26]
Probabilistic Polynomial Time | PP not known but see [3]
Bounded-Error BPP yes [7,29]
Probabilistic Polynomial Time

Zero-Error ZPP yes [7]
Probabilistic Polynomial Time

Random Polynomial Time RP not known but see [10]
Exact Counting GP not known but see [10]
Unambiguous Polynomial Time UP not known but see [10]

Table 1

When can it be useful to raiéP-hardness tad\5-hardness?

Khuller and Vazirani [13] asked whether similar non-sefucibility results can be
proven for problems in P other th&a-4-Color, under some plausible assumption
such ag® # NP. We established as Theorem 3.5 a general result showing that
almost trivial to find such problems.

This general result subsumes a number of results [8] pnogidoncrete—although
somewhat artificial—problems in P that are not self-redecibb Schnorr’'s sense,
unlessP = NP. Why are these problems artificial? The reason is that theyar
versions of standard NP-complete problems—such as tlsfiahiiity problem, the

clique problem, and the knapsack problem—that are defined by

(&) encoding directly into each solvable problem instanteval solution to this
instance, and simultaneously
(b) ensuring that computing the smallest solution remainard problem by fixing

a suitable ordering of the solutions to a given problem imsta

Here are some examples of such problems:

(1) (a) P-SAT is the set of pairgF, x;) such thatF' is a boolean formula in con-
junctive normal form and; is a variable occurring in each clausefofn

positive form.

(b) Let the variables of a given formuld” be ordered asF

F(.Thﬂfg,...

, ). Just as for the satisfiability problem,salution to a

P-SAT instancel = (F,z;) is any satisfying assignment of F'. A so-
lution ¢; of I is represented by the string in {0, 1}" that is defined
by ¢y = ¥r(x1)r(xs) - - - (z,), Where 1" represents “true” and(”

represents “false.”

(2) (a) P-Clique is the set of pair$G, C) such that7 = (V, E) is a graph and



C C VisacliqueinG.

(b) Let the vertex set of a given gragh = (V, E) be ordered a3’ =
{v1,v9,...,v,}. Just as for the clique problemsalution to aP-Clique
instancel = (G, C) is any cliqueC' C V that is of size at leasiC||. A
solutionC' of I is represented by the string in {0, 1}" that is defined
by ¥r = xa(vi)xea(v2) - - - xa(vn), Wherey denotes the characteristic
function of C, i.e.,xa(v) = 1if v € C, andys(v) = 0if v & C.

(3) (a) P-Knapsack is the set of tuplesU, s, v, k, b) such that/ is a finite set,
s andv are functions mapping frofi to the positive integers, and there
exists an element € U satisfyings(u) < bandv(u) > k.

(b) Let the setU of a givenP-Knapsack instancel = (U, s, v, k,b) be or-
dered ag/ = {uy,us,...,u,}. Just as for the knapsack problensau-
tion to I is any subset/ C U that satisfies the “knapsack property,” i.e.,
that satisfies the conditions

> s(u) <band > v(u) > k.

uEU uEU

A solutionU of I is represented by the strinfg in {0, 1}" that is defined
by 1 = xg(v1)xg(v2) - - X (vn)-

Note that the lexicographic ordering of strings induces itable ordering of the
solutions to a given problem instance. For each ofitipeoblemdlI defined above,
computing LF; can be shown to be NP-hard [8], which implies thiais non-self-
reducible unles® = NP.

Analogously, every standard NP-complete problem yieladh sn artificial, non-
self-reducible problem if®. In contrast, thé1-4-Color problem is a quite natural
problem. Is it possible to prove, under a plausible asswonguch a® # NP, the
non-self-reducibility of othenatural problems inP?
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